25.7.3
This website uses cookies to ensure you get the best experience on our website. Learn more

Learn Hyperspectral Remote Sensing from the Scratch

Gianfranco Di Pietro

Understanding a problem or project that involves satellite imagery can be very difficult and easily can come to a dead-end. There are numerous of Earth Observation satellites orbiting the earth and produce vast amount of data. Data that need to be processed, analyzed, and valuable information to be extracted. Earth Observation satellites or Remote Sensing satellites contain payloads (sensors) that capture parts or the entire globe at different wavelengths (spectral bands). A primary categorization of these sensors are: Optical (multispectral, hyperspectral) Thermal (multispectral, hyperspectral) Synthetic Aperture RADAR (SAR) Of course there are a few other types sensors, but the above are the most mature and used in an operational manner. The main focus of the course is at the hyperspectral optical remote sensing. Due to the nature of the subject, several concepts, processing chains, algorithms and methods discussed in this course are also applicable to other domains (optical multispectral and thermal). Based on my past experience, research and knowledge I composed this course with one thing in mind: help students, professionals, or even researchers to understand the main concepts of hyperspectral imagery and how you can place them in your everyday-work-life. Starting from a quick introduction about remote sensing and hyperspectral imaging, we continue to the various applications hyperspectral data are being used (from the Earth Observation perspective). At the core of the course, students get familiar with the main processing concepts and techniques applied on hyperspectral data. Four major processing workflows are being analysed: Spectral Mixing and Unmixing Spectral Matching and Labeling Spectral Library Building and Updating Spectroscopy and Object Parameter Estimation In each of these series of lectures, enrolled students are provided with extensive written documentation to further study the presented concepts and methods. This course is recommended for anyone who needs to understand and start working with hyperspectral data and imagery. People who are about to start either a Remote Sensing project or start to learn the basics of remote sensing, as well as those who have come to a dead-end in the middle of a remote sensing/earth observation project and need to know how hyperspectral data can help them overcome their problems.

Skills / Knowledge

  • Principles of Hyperspectral or Imaging Spectroscopy concepts
  • Spectral Mixture Analysis
  • Dimensionality Estimation and Reduction
  • Endmember Extraction Algorithms
  • Abundance Estimation Algorithms
  • Spectral Similarity Measures, Matching & Labeling

Issued on

February 4, 2020

Expires on

Does not expire